skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gomes, Dylan G. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The acoustic environment can serve as a niche axis, structuring animal behaviour by providing or obscuring salient information. Meadow katydid choruses occupy the ultrasonic, less studied, realm of this acoustic milieu, form dense populations in some habitats and present a potential sensory challenge to co‐occurring ultrasonic‐hearing animals. Aerial‐hawking insectivorous bats foraging immediately over vegetation must listen for echoes of their prey and other cues amidst the chorus din.We experimentally created the cacophony of a katydid chorus in a katydid‐free rice paddy using an aggregation of 100 ultrasonic speakers in a 25 × 25 m grid to test the hypothesis that aerially hawking bats are averse to this noise source. We alternated between chorus‐on and chorus‐off hourly, and acoustically monitored bat activity and arthropod prey abundance.We found that our phantom katydid chorus reduced bat activity nearest the sound source by 39.3% (95% CI: 7.8%–60.0%) for species whose call spectrum fully overlapped with the chorus, and elicited marginal reductions in activity in species with only partial spectral overlap.Our study suggests that ultrasonic insect choruses degrade foraging habitat, potentially suppressing bats’ ecosystem services as consumers of pests; and, given the global distribution of meadow katydids, may provide an underappreciated force modifying animal behaviour in other grassland habitats. A freePlain Language Summarycan be found within the Supporting Information of this article. 
    more » « less